On path decompositions of 2k-regular graphs
نویسندگان
چکیده
Tibor Gallai conjectured that the edge set of every connected graph G on n vertices can be partitioned into ⌈n/2⌉ paths. Let Gk be the class of all 2k-regular graphs of girth at least 2k − 2 that admit a pair of disjoint perfect matchings. In this work, we show that Gallai’s conjecture holds in Gk, for every k ≥ 3. Further, we prove that for every graph G in Gk on n vertices, there exists a partition of its edge set into n/2 paths of lengths in {2k − 1, 2k, 2k + 1}.
منابع مشابه
Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree
The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملHamilton decompositions of some line graphs
The main result of this paper completely settles Bermond's conjecture for bipartite graphs of odd degree by proving that if G is a bipartite (2k+1)-regular graph that is Hamilton decomposable, then the line graph, L(G), of G is also Hamilton decomposable. A similar result is obtained for 5-regular graphs, thus providing further evidence to support Bermond's conjecture.
متن کاملThree-regular path pairable graphs
A graph G with at least 2k vertices is k-path pairable if for any k pairs of distinct vertices 9f G there are k edge disjoint paths between the pairs. It will be shown for any positive integer k that there is a k-path pairable graph of maximum degree three.
متن کاملPath decompositions and perfect path double covers
We consider edge-decompositions of regular graphs into isomorphic paths. An m-PPD (perfect path decomposition) is a decomposition of a graph into paths of length m such that every vertex is an end of exactly two paths. An m-PPDC (perfect path double cover) is a covering of the edges by paths of length m such that every edge is covered exactly two times and every vertex is an end of exactly two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 50 شماره
صفحات -
تاریخ انتشار 2015